
Efficient Microservices with Elastic Containers
Greg Cusack∗

Maziyar Nazari∗
gregory.cusack@colorado.edu
maziyar.nazari@colorado.edu
University of Colorado Boulder

Boulder, Colorado

Sepideh Goodarzy
Prerit Oberai

sepideh.goodarzy@colorado.edu
prerit.oberai@colorado.edu

University of Colorado Boulder
Boulder, Colorado

Eric Rozner
Eric Keller
Richard Han

eric.rozner@colorado.edu
eric.keller@colorado.edu

rhan@colorado.edu
University of Colorado Boulder

Boulder, Colorado

ABSTRACT
Containers are a popular mechanism used among application de-
velopers when deploying their systems on cloud platforms. Both
developers and cloud providers are constantly looking to simplify
container management, provisioning, and monitoring. In this pa-
per, we present a container management layer that sits beside a
container orchestrator that runs, what we call, Elastic Contain-
ers. Each elastic container contains multiple subcontainers that
are connected to a centralized Global Cloud Manager (GCM). The
GCM gathers subcontainer resource utilization information directly
from inside each kernel running the subcontainers. The GCM then
tries to efficiently and optimally distribute resources between the
application subcontainers residing on a distributed environment.

CCS CONCEPTS
• Networks → Cloud computing; • Computer systems orga-
nization → Cloud computing.

KEYWORDS
Cloud Computing, Microservices, Compute Resource Efficiency

1 INTRODUCTION
The worldwide cloud computing revenue generation is expected to
grow by almost 55% over the next 3.5 years [6]. As a result, cloud
service providers and application developers are constantly looking
for ways to run, manage, and scale cloud applications as efficiently
as possible [4, 5]. Enter containerized applications – also known
as microservices. Microservices are applications broken down into
their fundamental components (or tasks). Each task is run inside a
container (e.g. Docker container) as its own "service" and communi-
cates with other containers over the network. Microservices provide
a number of advantages over traditional, monolithic applications in-
cluding, independent upgrade cycles, fine-grained resource control,
and high elasticity.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’19 Companion, December 9–12,2019, Orlando, FL, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7006-6/19/12.
https://doi.org/10.1145/3360468.3368180

Figure 1: Operation of two Elastic Containers with speci-
fied CPU, memory, and network limits. 1) Application is de-
ployed in the cloud. 2) Orchestration layer deploys contain-
ers on different hosts. 3) Containers register with Global
Cloud Manager (GCM). 4/5) GCM monitors and allocates
CPU/memory/network limits.

As microservices grow in popularity, weâĂŹre also seeing the
containerization of virtual network functions (VNFs). VNFs have
emerged as the de facto deployment method in modern day net-
work applications as VNFs are more cost effective, flexible, easier
to scale, and migrate than traditional network functions running
on specialized hardware. We’re beginning to see the containeriza-
tion of VNFs, opening the door for container orchestration systems
(e.g. Kubernetes [2]) to automate the deployment, scaling, manage-
ment, and failure handling of network function clusters. In fact,
Arpit Joshipura, the general manager for networking at The Linux
Foundation, "...expects Kubernetes to evolve into a management
platform for managing and deploying [cloud-native network func-
tions]... [8]." The containerization of VNFs and its integration with
Kubernetes is promising as the resulting system will provide all the
benefits of microservices with the benefits of VNFs.

However, while the combination of Kubernetes and container-
ized NFVs provide promise for an elastic and efficient cloud network

https://doi.org/10.1145/3360468.3368180


infrastructure, a few issues arise. First, container management so-
lutions require resource allocation on a per-container level. As a
result, each container must be statically allocated CPU, memory,
and network resources prior to deployment, resulting in situations
of resource over and under allocation. The second issue is the in-
ability for containers within an application to dynamically share
resources based on current demand. For example, let’s say we have
an application with two containers CA and CB, each allocated one
core. If CA is under high CPU load and CB is relatively idle, CA
cannot use some of CB’s available CPU bandwidth even though CB
isn’t using it [1]. As a result, the overall application throughput is
less than it could be.

In this work we address these two shortcomings of all microser-
vices through the lens of containerized network functions. We
introduce Elastic Containers (ECs), an early state system that al-
lows microservices to be deployed such that they can dynamically
share resources among containers running within the same applica-
tion to reduce resource wastage, maximize efficiency, and improve
scalability.

2 ELASTIC CONTAINERS
To address both of the issues associated with microservices and
Kubernetes deployments, we propose Elastic Containers (ECs). An
EC is like any other containerized application or microservice. How-
ever, each container (we call these subcontainers in the context
of an EC) within the application communicates with a "Global
Cloud Manager (GCM)" that has a global view of all subcontainers
The GCM keeps track of and distributes compute resources to the
EC’s subcontainers based on current application demands. Figure 1
outlines the architecture of an EC system.

ECs abstract away per-container resource provisioning and man-
agement as seen in traditional microservice applications. ECs allow
their subcontainers to consume the resources they require based
on current demand up to a global resource threshold set by the
application deployer. Instead of enforcing per-container limits on
compute resources, we set per-application limits on compute re-
sources. Per-application limits are set using three numbers, the
total number of cores, the total amount of memory, and the total
network bandwidth an entire application is allowed to use. The
subcontainers simply just "run" and request resources as needed
from the GCM.

The GCM responds to resource requests from the subcontainers
taking into account current CPU, memory, and network loads and
the remaining compute resources available to the application in one
of three ways. One, the GCM will fulfill the subcontainer request
and tell the subcontainer they can use more resources. Two, allow
the container to use a subset of the requested resources Three, tell
the container that it may not have any more resources. In the third
case, all of the per-application resources have been consumed at the
current time. However, as time goes on and loads on each individual
subcontainer change, subcontainers that couldn’t get the requested
resources a minute ago may be able to now.

3 IMPLEMENTATION
We attacked the problem of CPU runtime and memory allocation
first, with network resource allocation to come next. To implement

CPU runtime allocation, we learn from the Linux kernel’s com-
pletely fair scheduler (CFS) and expand a subset of the CFS to run
on a multi-server and multi-container scale1. What is important
here is that locally, subcontainers consume runtime from the in-
host scheduler in chunks. Once they have used up their allocated
amount, the container is throttled. Each container’s available run-
time is refilled on a periodic basis. For ECs, instead of refilling a
container’s runtime locally, we add a kernel hook such that the
subcontainer makes a request to GCM for more runtime when-
ever it needs it. This allows subcontainers to acquire more runtime
when they run out instead of waiting to get refilled by the CFS pe-
riodically. By having subcontainers reach out directly to the GCM,
subcontainers can acquire more runtime in times of heavy load. Our
initial measurements show an average latency increase of 0.3% over
the unmodified CFS scheduler each time a subcontainer requests
more runtime from the GCM.

When it comes to dynamic memory allocation for an elastic
container, we deploy each subcontainer with an initial maximum
memory limit that is enforced by the kernel 2. Generally, if a process
asks for memory exceeding the container’s limit, the kernel will
check if it can reclaim unused pages, if not, the kernel calls the
OOM-killer to kill processes exceeding the container’s memory
limit. We added a hook in the kernel before the OOM-killer call
that makes a request to the GCM to see if there is memory available
from our per-application memory allocation. If there is memory,
the GCM returns a new maximum memory limit to the requesting
subcontainer, effectively increasing the amount of memory the
subcontainer can use. If there is no memory left, the GCM will
attempt to reclaim unused memory from the other subcontainers in
the same EC. The GCM sends a request down to an elastic container
agent running on each host. The agent acts on behalf of the GCM to
reclaim available pages and sends any reclaimed pages back to the
GCM. If no memory is reclaimed, the OOM-killer is called on the
need container as expected. Preliminary micro-benchmarks show
an increased memory allocation latency of 13.8% when requesting
memory from the GCM instead of the local machine.

4 CONCLUSION
We have set up an initial system that allows microservices to be
deployed and run as members of an EC. Each subcontainer is able
to dynamically request resources in an "as needed" fashion from a
central manager. When subcontainer loads are not uniform, sub-
containers with higher demands are able to use up more of the
per-application compute resources than they otherwise would be
able to in an typical microservice environment. We expect ECs
will enable a higher resource efficiency when container loads are
mismatched within a containerized application.

5 ACKNOWLEDGEMENTS
This work was supported by the NSF and VMware grant 1700527
(SDI-CSCS).

1We refer readers to [7] for details on the Linux kernel scheduler
2We refer readers to [3] for details on the Linux kernel’s memory management system

2



REFERENCES
[1] 2004. CGROUPS. https://www.kernel.org/doc/Documentation/cgroup-v1/

cgroups.txt. (2004).
[2] 2014. Kubernetes. https://kubernetes.io/. (2014).
[3] 2019. Memory Management. https://www.kernel.org/doc/html/latest/

admin-guide/mm/index.html. (2019).
[4] Marcelo Abranches, Sepideh Goodarzy, Maziyar Nazari, Shivakant Mishra, and

Eric Keller. 2019. Shimmy: Shared Memory Channels for High Performance
Inter-Container Communication. In 2nd {USENIX} Workshop on Hot Topics in
Edge Computing (HotEdge 19).

[5] Zaid Al-Ali, Sepideh Goodarzy, Ethan Hunter, Sangtae Ha, Richard Han, Eric
Keller, and Eric Rozner. 2018. Making Serverless Computing More Serverless.

In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE,
456–459.

[6] Katie Costello. Gartner Forecasts Worldwide Public Cloud Revenue to Grow
17.5 Percent in 2019. :www.gartner.com/en/newsroom/press-releases/2019-04-
02-gartner-forecasts-worldwide-public-cloud-revenue-to-g. (????).

[7] Paul Turner, Bharata B Rao, and Nikhil Rao. 2010. CPU bandwidth control for CFS.
In Proceedings of the Linux Symposium. 245–254. http://www.linuxsymposium.
org/LS_2010_Proceedings_Draft.pdf

[8] Mike Vizard. 2018. The Linux Foundation to Drive Shift to Container Network
Functions. https://containerjournal.com/topics/container-networking/the-linux-
foundation-to-drive-shift-to-container-network-functions/. (2018).

3

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://kubernetes.io/
https://www.kernel.org/doc/html/latest/admin-guide/mm/index.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/index.html
:
http://www.linuxsymposium.org/LS_2010_Proceedings_Draft.pdf
http://www.linuxsymposium.org/LS_2010_Proceedings_Draft.pdf
h

	Abstract
	1 Introduction
	2 Elastic Containers
	3 Implementation
	4 Conclusion
	5 Acknowledgements
	References

