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Abstract—This paper pushes the limits of automated resource
allocation in container environments. Recent works set container
CPU and memory limits by automatically scaling containers
based on past resource usage. However, these systems are heavy-
weight and run on coarse-grained time scales, resulting in
poor performance when predictions are incorrect. We propose
Escra, a container orchestrator that enables fine-grained, event-
based resource allocation for a single container and distributed
resource allocation to manage a collection of containers. Escra
performs resource allocation on sub-second intervals within
and across hosts, allowing operators to cost-effectively scale
resources without performance penalty. We evaluate Escra on two
types of containerized applications: microservices and serverless
functions. In microservice environments, fine-grained and event-
based resource allocation can reduce application latency by
up to 96.9% and increase throughput by up to 3.2x when
compared against the current state-of-the-art. Escra can increase
performance while simultaneously reducing 50th and 99th%ile
CPU waste by over 10x and 3.2x, respectively. In serverless
environments, Escra can reduce CPU reservations by over 2.1x
and memory reservations by more than 2x while maintaining
similar end-to-end performance.

Index Terms—Cloud computing, distributed systems, cloud
operating systems, resource allocation, containers, microservices,
serverless, multitenancy

I. INTRODUCTION

Containerized infrastructure is quickly becoming a preferred
method of deploying applications. The light-weight nature
of containers coupled with rich orchestration systems enable
a new way to design automated operations that are inte-
grated with development workflows. In these deployments,
per-container resources limits are used to prevent interference
between containers and unchecked resource usage.

Setting container resource limits is a trade-off between
application performance and efficient use of underlying system
resources. When resource limits are set low to prioritize effi-
cient resource use, applications will experience an increased
number of CPU throttles and out-of-memory (OOM) events.
Throttles slow processing and OOMs kill containers; both
result in degraded application performance. When resource
limits are set high to prioritize application performance, re-
sources are underutilized which increases deployment cost [1],
[2]. Developers pay the cost when cloud providers charge
tenants based on resources reserved [3]–[5]. Cloud providers
pay the cost in cases where developers are charged by usage,
such as in serverless computing [6]–[9].

Due to this trade-off, setting accurate limits is important. In

practice, it is also difficult [3], [10]–[13]1. Using profiling to
characterize application resource requirements will only result
in accurate estimates if there is a representative workload.
As workloads are often dynamic, the resources needed will
change over long timescales (diurnal patterns, gradual changes
in application popularity, etc.) and short timescales (bursts,
failures of coupled systems, etc.). Since creating an accurate
estimate of resource requirements is so complex, developers
and operators often resort to over-provisioning resources. This
results in underutilized deployments, a trend often observed by
datacenter operators [12], [14]–[17].

Recent work has addressed some of these challenges by
leveraging machine learning to predict future needs and then
automatically scaling container resource limits based on those
predictions [3], [11]. These works eliminate the developer
burden of setting resource limits but are constrained to using
coarse-grained intervals (e.g., several minutes) to set resource
limits. Coarse-grained intervals are required because the sys-
tem has to learn enough information to be able to predict
resource use. This is a poor fit for some workloads with
short-lived containers, such as in serverless systems [18]–
[21]. Coarse-grained intervals also increase the odds of mis-
prediction since the dynamics of applications can change
throughout an interval. Thus, these works still contend with
the performance and efficiency trade-off.

In this paper, we argue the performance and efficiency
trade-off can be avoided by using a fine-grained, event-based
resource allocation scheme. To this end, we introduce Escra: a
fine-grained, event-based resource allocation infrastructure for
single containers and distributed resource allocation capable
of managing resources of multiple containers across multiple
nodes. We find resource allocation can easily adapt to sub-
second intervals within and across hosts, allowing datacenter
operators to cost-effectively scale and assign resources without
performance penalty. This scheme has numerous benefits.
Instead of a container being killed when it reaches an OOM
event, an event-based system can catch the event and scale
the container dynamically. Instead of making conservative
allocations in order to avoid performance degradation over
coarse-grained time intervals, a fine-grained system can
always aim to right-fit allocations to current resource demands
and can quickly react to instances of CPU throttling.

Escra consists of a logically centralized controller that
administers resource allocations to containers across servers.

1The aggregate CPU utilization at Twitter is <20% but the reservations
reach up to 80%. Memory utilization is only slightly better at 40-50% but the
reservations still greatly exceed the usage [12].



Each server is instrumented with kernel hooks and runs an
agent process that applies resource decisions and reports con-
tainer usage to the controller. A Distributed Container abstrac-
tion enforces resource isolation by enforcing per-application
resource limits, similar to Resource Quotas found in other
container orchestration systems [22]–[25]. In these systems,
Resource Quotas are enforced at the admission control stage.
However, unlike Resource Quotas, a Distributed Container
enforces resource limits both at deployment and throughout
the lifetime of a container, allowing containers belonging to
the same tenant to share compute resources across hosts on
the order of milliseconds. Runtime limit enforcement enables
Escra to fully utilize the per-application limit even when
some containers are using less than their initial deployment
allocation. The contributions of our work are as follows:
• We expose fine-grained telemetry data from Linux’s Com-

pletely Fair Scheduler (CFS) [26]. This allows Escra to
quickly track and react to actual resource needs, resulting
in both high performance (low latency and high throughput)
and low cost (minimal slack2).

• We implement event-based memory scaling and periodic
memory reclamation. Escra uses memory scaling to increase
container memory upon an OOM event, rather than allowing
the container to be killed. Periodic memory reclamation
increases application memory efficiency.

• We show Escra is effective by comparing slack, latency, and
throughput performance to recently proposed systems. We
reduce application latency by up to 96% while increasing
throughput up to 3.2x over a state of the art container
orchestrator. These low latency and high throughput rates
are achieved while simultaneously reducing the median CPU
and memory slack by over 10x and 2.5x, respectively. We
show the overhead from the central controller is minimal.

• We show Escra reduces slack and both CPU and memory
reservations in serverless applications without increasing
application latency, potentially reducing cost to both the
developer and the infrastructure provider.

II. RELATED WORK

Current container orchestration systems (Kubernetes [27],
Borg [28], Mesos [29]) set static container resource alloca-
tions. Here we present recent works that instead dynamically
scale containers and discuss the limitations of these systems.

Vertical Pod Autoscaler (VPA) VPA is a Kubernetes
project that implements automated container scaling through
a threshold-based scaling mechanism [25]. VPA sets a target
resource utilization and an upper and lower bound on that
utilization. When the container usage hits the upper threshold,
VPA scales the container up. When the lower bound is hit,
VPA scales the container down. VPA also has the capability
to enforce per-application limits via Resource Quotas [22].
A resource quota is a hard resource limit on the aggregate

2Slack: a container’s CPU or memory limit minus its CPU or memory
usage

compute usage across all or a subset of deployments or
services in a Kubernetes namespace.

Limitations of VPA VPA sets the upper and lower limit
scaling bounds far apart. Since scaling a container requires a
container restart, VPA only scales a container at most once per
minute. The loose scaling-bound limit and infrequent container
scaling results in high slack which translates to decreased cost-
efficiency.

Autopilot Autopilot is a proprietary Google project that
addresses the low cost-efficiency of static container deploy-
ments [3]. Autopilot runs a control loop that collects both
per-second and five minute aggregated usage data from each
container, analyzes it, and then makes a prediction on whether
or not a container needs to be scaled. Autopilot uses machine
learning predictions to scale container limits as frequently as
every five minutes.

Limitations of Autopilot While Autopilot provides an auto-
mated mechanism to set limits, it does so at coarse-granularity
which causes cost-efficiency and performance issues for two
reasons. First, Autopilot’s heavy-weight algorithm and pe-
riodic control loop prevent it from quickly responding to
changes in workloads. As a result, resource predictions are
forced to at least match the maximum predicted usage over
the next allocation period (Autopilot uses a default 5-minute
period). This leads to unnecessary slack. Second, because
Autopilot relies solely on prediction, it is unable to correct
inaccurate predictions even when resources are available.
Inaccurate predictions can cause unnecessary OOMs and CPU
throttles.

Firm Firm also uses machine learning to improve container-
ized application performance and cost-efficiency [11]. While
Firm does attempt to minimize CPU reservations, the primary
objective of Firm is to reduce service-level objective (SLO)
violations. Firm minimizes SLO violations by intelligently
multiplexing compute resources to optimize the critical path
of an application. Firm is similar to Autopilot because it does
not require a pod restart to scale container CPU resources and
can update container limits automatically.

Limitations of Firm Firm does not implement seamless or
automatic memory scaling, requiring users to set static limits.
Firm shares the limitations of Autopilot regarding performance
and cost-efficiency issues as both frameworks feature a coarse-
grained, ML-based feedback loop.

III. INTRODUCING ESCRA

Escra is a container resource allocation system that achieves
high performance, cost-efficiency, and strong isolation. Escra
automatically scales containers in a fine-grained manner, while
providing strong isolation via a new abstraction called a Dis-
tributed Container. A Distributed Container allows containers
belonging to the same tenant to dynamically share resources
across multiple compute nodes while capping the overall
aggregate resource usage for a given application or tenant at
runtime.
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Fig. 1: Escra Architecture. A single control node manages and
controls a set of containers distributed across multiple worker
nodes.

Figure 1 shows a high-level view of the four key compo-
nents in the Escra architecture. The Application Deployer and
Container Watcher ( 1⃝) take a set of YAML files describing
a set of Kubernetes deployments, services, and containers.
The Application Deployer interfaces with the Kubernetes
API to deploy containers. The Container Watcher monitors
Escra containers and enables newly deployed containers to
start streaming fine-grained telemetry to the Controller. The
logically centralized Controller ( 2⃝) handles the unique, fine-
grained telemetry sent from the kernel via kernel hooks on
workers ( 3⃝). These kernel hooks obtain fine-grained scheduler
data that is not available in user-space. A centralized controller
model can be capable of scaling, as evidenced by production
systems for datacenters [30] and geo-distributed network ser-
vices [31]. The Resource Allocator ( 4⃝) ingests telemetry from
the Controller and makes per-container resource allocation de-
cisions. Finally, similar to Kubernetes’s per-node kubelet [27],
an Agent is run on each host ( 5⃝). The Agent handles resource
updates sent from the Controller and can dynamically scale
both CPU and memory container limits without restart on the
order of 100s of microseconds. In this section, we describe
Escra’s unique ability to make scaling decisions on a fine-
grained timescale and in an event driven manner. A complete
description of Escra’s architecture follows in Section IV.

To illustrate the benefits of fine-grained container resource
allocation, we deployed and loaded a container with sys-
bench [32], saturating 1-4 CPUs at any one time. The trace
of the application execution with Escra is shown in Figure 2.
Escra tracks the exact resource needs on a rapid time-scale by
reacting to container throttles and OOM events and adjusting
resources based on information collected during each CPU
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Fig. 2: Escra’s CPU tracking ability under a dynamic workload

scheduling period and at OOM events. The implication of
this fine-grained right-sizing is that Escra (1) significantly
reduces slack and (2) simultaneously improves performance as
applications are being allocated the resources they need rather
than being throttled or killed due to OOMs. The remainder of
this section provides further insights into how Escra achieves
fine-grained resource allocation.

Per-period CPU Telemetry and Dynamic Reallocation
Fine-grained telemetry data is required to minimize slack
via fine-grained resource allocation. Our initial analysis of
systems that aggregate CPU and memory data (cAdvi-
sor [33], Prometheus [34], Kubectl [27], etc.) found they
suffer from inefficiencies stemming from reliance on coarse-
grained timescales. Allocating resources quickly is not useful
if allocations are based on usage data that is stale or aggregated
at insufficient levels. Our goal is to obtain near-instant usage
information so Escra never operates on stale data. In order to
obtain fine-grained CPU data, Escra uses kernel hooks into
Linux’s Completely Fair Scheduler (CFS). Upon deployment
of each container, the Agent process creates a kernel socket
for the container to use to report its metrics to the Controller.
To implement fine-grained telemetry, containers report their
per-period runtime statistics to the Controller at the end of
each period. The telemetry data consists of the cgroup ID of
the container, whether the container was throttled in the last
period, and the amount of unused runtime in that period.

The Resource Allocator ingests raw container metrics from
the Controller and uses two windowed statistics to track
unused runtime and the number of throttles. The Resource
Allocator uses these statistics to update per-container limits as
often as every 100ms. The goal is to proactively update limits
in order to keep the container limits just above container usage
at all times. We update container CPU quotas using RPCs to
the Agent process running on the host of the container, similar
to [11].

Reactive Memory Reclamation and Reallocation upon
OOM Events Escra monitors container memory usage and
can seamlessly scale memory limits via two custom system
calls that hook into Linux’s memory cgroup structure.3 One
unique opportunity of fine-grained allocation is the ability to
react to OOM events. To achieve this, a kernel hook is added
in Linux’s memory allocation function, try_charge(), to
catch a container after it exceeds its memory limit and right be-

3Docker supports seamless container scaling [35], but Kubernetes does not.



fore it gets OOMed. This hook combats inaccurate predictions
within autoscalers. For example, VPA [25] and Autopilot [3]
scale containers at most once a minute and once every five
minutes, respectively. There is a chance a container could
OOM between allocation decisions. Our kernel hook allows a
container to request more memory from the Controller before
the container is killed. While this is a reactive mechanism
for memory scaling, the request lookup penalty is orders of
magnitude faster than a container crash and restart.

One beneficial aspect of this OOM-preventing kernel event
is the Resource Allocator can determine how to allocate
additional memory resources depending on the state of the
node and the application. If there is available memory on
the node, the Allocator can simply scale the needy container
up. If the node is under memory pressure, the Controller
can launch an aggressive memory reclamation process that
reclaims memory from other containers on the node with high
slack. Not only will this free up memory for the container in
need, but it also increases node utilization, reduces slack, and
improves cost-efficiency.

Proactive Periodic Memory Reclamation In order to reduce
memory slack, the Escra Controller periodically contacts the
Escra Agent on each worker node, asking the Agent to reduce
the memory limits of each container on the same node as
the Agent. The Agent checks the usage and the limit of each
container it manages. If the limit of a container exceeds the
usage of the container by more than δ bytes, then the Agent
shrinks the container memory limit such that the memory limit
minus the memory usage equals δ bytes. Each Agent then
reports back the total reclaimed memory from its containers to
the Escra Controller. The Resource Allocator can then give the
reclaimed memory to other containers experiencing memory
pressure.

IV. ESCRA ARCHITECTURE

This section describes the architecture of Escra, our con-
tainer orchestrator built with Kubernetes, that implements
(i) automated container limit settings, (ii) seamless container
scaling, (iii) fine-grained resource allocation, and (iv) dynamic,
per-tenant resource sharing and collective resource limits en-
forced at runtime. Escra implements these features using fine-
grained telemetry, event-based memory scaling, aggregated
application-wide resource limits, and a centralized Controller
and Resource Allocator.

A. Application Deployer & Container Watcher

The Application Deployer ingests a Distributed Container
configuration as a set of YAML files (Figure 1, 1⃝) describing
a set of containers, and maximum CPU and memory limits.
The maximum CPU and memory limits represent the limit
on the aggregate usage of all containers in the application
(Figure 3, 2⃝). Prior to deploying the containers via Kuber-
netes, the Deployer sends the global application limits to the
Controller. This informs the Resource Allocator (Figure 1,
4⃝) of the total maximum usage of the containers in the

deployment. Once the Deployer sends the application limits
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to the Controller, the Controller is ready to accept network
connections from each container.

Initial limits are set to bootstrap containers when
they first deploy but these limits will be changed
by the Controller at runtime. The Deployer initial-
izes the CPU and memory limit of each container to:

global cpu limit

# containers
(1)

global mem limit ∗ σ
# containers

(2)

where σ is a configurable parameter representing the percent-
age of the global application memory limit to be withheld for
containers that experience OOM events.

The Container Watcher integrates with Kubernetes to detect
container creation. Upon detection, the Watcher notifies the
Agent (Figure 1, 5⃝) located on the same host as the newly
created container.

B. Kernel Hooks

Escra uses kernel hooks to enable fine-grained telemetry and
trap OOMs. After an Agent is notified that a new container
has deployed, the Agent invokes a custom syscall that carries
out three tasks, each implemented via kernel hooks (Figure 1,
3⃝). First, the syscall creates a TCP kernel socket to message
the Controller (Figure 1, 2⃝) and informs the Controller of
the existence of the container. The per-container TCP kernel
socket will persist for the life of the container. Once the Con-
troller registers the new container, it updates the container’s
CPU and memory limit based on the global application limits
and current application resource use.

Next, the syscall modifies the container’s underlying Linux
CPU and memory cgroup structures to enable fine-grained
telemetry and event handling. For CPU, the syscall hooks into
Linux’s Completely Fair Scheduler to extract runtime data
to stream to the Controller. At the end of each period, the
hook writes the container’s cgroup quota, unused runtime (the
runtime variable in the CFS Bandwidth kernel structure),
and whether the container was throttled in the last period into
a shared FIFO buffer in the kernel4.

After the hook finishes writing data to the buffer, the runtime
of the cgroup is refilled and the next period begins. Per-
container kernel threads consume statistics from the FIFO

4Note that per-period unused runtime is not available in userspace and
while one could interpret similar data from the cpuacct cgroup subsystem,
cpuacct was never designed for accuracy and was initially designed as a
way to showcase the capabilities of cgroups [36].



queue and send the queued CPU statistics over UDP to the
Controller. Along with the container quota and remaining
runtime, the CPU statistic message also includes a tag letting
the Controller know what container the incoming statistic
refers to. The hook will report statistics once per-period for
the life of the container.

To handle OOM events, the syscall adds a kernel hook in the
memory cgroup structure (mem_cgroup) for the container. If
a container exceeds its memory limit, before it is killed this
kernel hook forwards the OOM event to the Controller over
the existing TCP kernel socket that was previously used during
container initialization. If memory is available in the global
application pool, the container can increase its memory limit
and continue running.

C. Controller

The Controller brings all of the system components together
and coordinates their interactions. Figure 3 shows a more
detailed view of the Controller, Resource Allocator, and the
Distributed Container abstraction.

When containers register themselves with the Controller
upon deployment, the Controller creates a logical container
object and adds it to a pool of the other Escra containers
within the application (Figure 3, 2⃝). The logical pool of Escra
containers is used to maintain an updated view and status
(resource usage, limit, etc.) of the containers it is managing.

Once all containers are deployed and registered with the
Controller, the Controller becomes responsible for several
additional tasks. The Controller is responsible for launching
a periodic memory reclamation process, handling fine-grained
telemetry data from all containers, and handling memory re-
quests from containers under memory pressure (Figure 3, 1⃝).
The Controller is also responsible for carrying out allocation
decisions made by the Resource Allocator (Figure 3, 4⃝).
The Controller is not responsible for making those CPU and
memory allocation decisions.

The Controller launches a periodic reclamation loop on
behalf of the Resource Allocator that triggers each Agent
to reclaim excess reserved but unused memory from each
container in the cluster. The Resource Allocator determines
to what extent each container’s memory is resized. Every 5
seconds, the Controller sends a request to each Escra Agent,
requesting the Agent to reduce the memory limit of each Escra
container, C(i), and send back the amount the container was
resized by ψ. This resized value is the amount of memory
reclaimed from that specific container. The reclaim process is
as follows. The Agent reduces the memory limit on a container
if:

C(i)l > C(i)u + δ
where C(i)l and C(i)u are the memory limit and usage of the
container, respectively, and δ is a tunable parameter managed
and set by the Resource Allocator that represents the memory
reclamation ”safe margin.” If the condition above is satisfied,
the container limit is updated via: C(i)′l ← C(i)u + δ, other-
wise, the container limit is left unchanged. We empirically set

the safe margin to 50 MiB. The amount of reclaimed memory
is measured as:

ψ ← C(i)l − C(i)′l
where C(i)′l is the resized container limit and ψ is the amount
of reclaimed memory. Therefore, for each container that is
resized, the Agent passes back to the Controller ψ bytes
of memory. The Escra Controller forwards ψ bytes to the
Resource Allocator which then adds ψ bytes of memory
into the global memory pool via: global mem limit ←
global mem limit + ψ. Note that the Controller passes all
CPU telemetry data, memory requests, and reclaimed memory
updates to the Resource Allocator.

D. Resource Allocator

The Resource Allocator is the lightweight decision-making
component that determines the containers whose resources
should be allocated to or reclaimed from. The Resource
Allocator is composed of three key components. First, it has
a global resource pool for both CPU and memory. For CPU
and memory, it keeps track of the maximum application limit
(Figure 3, 2⃝), the total allocated resources, and the total
unallocated (or available) resources (Figure 3, 6⃝). Second,
the Resource Allocator collects fine-grained CPU telemetry
data from the Controller and uses a lightweight algorithm to
make decisions on whether or not to scale up or scale down
individual container CPU limits (Figure 3, 5⃝). Third, the
Resource Allocator consumes out-of-memory events sent from
the Controller and, based on the globally available memory,
increases the memory limit of memory-pressured containers.

If a container is not using up to its allocated resource limit,
the Resource Allocator will trigger the Controller to take away
those excess resources. However, the Allocator is designed
to quickly identify when resources need to be given back to
containers and will instruct the Controller to update container
limits as needed.

1) Dynamic CPU Allocation

The CPU allocation algorithm consumes CPU telemetry
data sent from each container across all nodes in order to share
CPU allocations across nodes and remain under the maximum
CPU limit (Ωl). At the end of the container running period
t, the Resource Allocator consumes a runtime statistic from
the Controller. The runtime statistic for a container i during
period t (C(i)[t]) includes the container quota (C(i)q[t]) in
ms, the amount of unused runtime (C(i)q[t] − C(i)u[t]) in
ms, and whether the container was throttled (C(i)th[t]) in the
last period t.

The Resource Allocator uses two sliding windowed statistics
that track (i) the excess runtime a container has at the end of
each period and (ii) if a container was throttled during the
last period. Based on these windowed statistics, the Resource
Allocator determines whether a container needs or has excess
CPU runtime and updates container quotas. A container quota
(or limit) during period t is increased if C(i)th[t] = 1 and



will be increased for the following period t+ 1 via:

C(i)q[t+1] = C(i)q[t]+

n∑
t=0

C(i)th[t]

n
∗(Ωl−

λ∑
i=0

C(i)q[t])∗Υ

where

n∑
t=0

C(i)th[t]

n
is the windowed statistic measuring the

average number of throttles over the last n container periods,
λ∑

i=0

C(i)q[t] is the unallocated CPU runtime for the entire

application, λ is the number of containers in the application,
and Υ is a tunable parameter that affects the rate at which a
container CPU quota is scaled.

A container quota during period t is decreased if C(i)q[t]−
C(i)u[t] > γ, where γ is a tunable parameter that adjusts when
container quotas should be scaled down. A container quota for
period t+ 1 is scaled down via:

C(i)q[t+ 1] = C(i)q[t]−

n∑
t=0

(C(i)q[t]− C(i)u[t])

n
∗ κ

where

n∑
t=0

(C(i)q[t]− C(i)u[t])

n
is the windowed statistic mea-

suring the average runtime remaining during the last n con-
tainer periods, and κ is a tunable parameter that affects the rate
at which container quotas are scaled down. We empirically
found that systems with high variance in CPU usage between
periods performed better with a larger Υ and a smaller γ and
κ.

2) Dynamic Memory Allocation

This section details the Resource Allocator algorithm for
handling out-of-memory events received from containers and
ensuring the proper sharing of memory resources across an
application. The Resource Allocator determines the amount
of additional memory to allocate to containers under memory
pressure and the amount of memory to reclaim from containers
with unused memory.

The Resource Allocator consumes out-of-memory events
that are sent from a container just before the container is
killed for exceeding its memory limit. Upon receiving an
out-of-memory event from a container C(i), the Resource
Allocator checks if there is unallocated memory available in
the global resource pool. If there is no available memory
(all global memory has been allocated to containers), the
Allocator tells the Controller to reclaim unused memory from
other containers in the application (described in Section IV-C).
We implement out-of-memory events in Escra this way to
avoid killing a container for exceeding its memory limit when
available memory in the application exists.

If the Controller is able to reclaim memory from other
containers in the application, the Resource Allocator will
allocate a fixed number pages of memory to C(i) by invoking
the Agent to update the memory limit of C(i). If the Allocator
is unable to reclaim any memory from other containers, C(i)
is killed by the operating system (as is standard).

E. Integrating Escra With Serverless Frameworks

The fine-grained approach to resource allocation in Escra is
well suited to serverless environments due to the high degree
of multitenancy in serverless systems as well as the short-
lived nature of serverless functions. Since functions have short
execution times (90% execute in under 1 minute [18]), coarse-
grained resource management solutions are insufficient for
serverless workloads. Since Escra is fine-grained and designed
for use with containers, it is compatible with serverless frame-
works that use containers to isolate serverless functions.

We choose OpenWhisk [37], an open-source serverless plat-
form, as an example to illustrate how Escra may be integrated
with serverless frameworks. In our configuration, OpenWhisk
is deployed via Kubernetes and serverless functions (termed
user actions) are run in pods. Each pod is deployed as part of
the Kubernetes openwhisk namespace. Treating OpenWhisk
as a single application, one can use the openwhisk names-
pace and invoker containerPool memory limit to set
global application memory in Escra. We modified pod affinity
to ensure OpenWhisk infrastructure was deployed on dedicated
infrastructure nodes so there would be no resource contention
between architectural components and user actions. While
there is no global invoker CPU limit in OpenWhisk, one can
set memory and CPU to scale linearly, which indirectly sets a
global CPU limit. Escra does not delay container creation in
OpenWhisk because the connection between a container and
the Controller does not block the container from beginning
to execute. Escra already interfaces with Kubernetes so no
further modifications are needed for a minimal integration that
allows all user action pods to benefit from resource sharing and
reclamation.

V. IMPLEMENTATION

Escra implementation consists of a total of 14.1k SLOC.
The Controller and Resource Allocator are written in C++
and utilize gRPC to communicate with the Deployer, Watcher,
and Agents (all written in Go). The Deployer sits on top
of Kubernetes and integrates with the Kubernetes deployer
API via client-go [38] to deploy Escra containers. Docker
is used as the underlying container runtime. The Container
Watcher integrates with the Kubernetes work-queue API and
communicates with the Agent via gRPC as well.

Escra worker nodes run a custom Linux kernel based on
Linux kernel 4.20.16. The custom kernel includes a hook in
the CFS cgroup subsystem and in the memory management
subsystem. The kernel also includes a custom message struc-
ture used for CPU telemetry reporting and memory requests
to the Controller. The rest of the kernel modifications include
approximately 1,500 SLOC spread across six kernel modules
that implement limit resizing and CPU telemetry.

VI. EVALUATION

The goal of Escra is to automatically and seamlessly
achieve high performance, cost-efficiency, and isolation. As
fine-grained allocation is a key capability of Escra, the first
goal of our evaluation is to show how much Escra’s highly



reactive decision making process is able to improve both
performance and cost-efficiency in comparison to common
practice (static allocation) and a state-of-the-art system (Au-
topilot). Our second goal is to show how Escra can reduce
the overall reservation requirements for serverless applications,
while maintaining application performance; this has the po-
tential to reduce cost for both the application owner and the
infrastructure provider.

A. Experimental Setup

Experiment clusters are created using Cloudlab [39] re-
sources consisting of a control node and worker nodes. Along
with the default Kubernetes components, the control node
runs the Escra Deployer, Watcher, Controller, and Resource
Allocator. Each worker node runs an instance of the Escra
Agent.

Microservice Benchmark Applications We first evaluate
Escra on a set of four microservice applications running across
three worker nodes and one control node. Each node consists
of two Intel Xeon Silver 4114 10-core 2.20 GHz CPUs, 192GB
of ECC DDR4-2666 memory, and a dual-port Intel X520-DA2
10Gb NIC. We set κ to 0.8, γ to 0.2, and Υ to 20 in the
Resource Allocator for all experiments unless otherwise stated.

The microservice applications represent a set of four interac-
tive, real-world benchmarks: (1) MediaMicroservice [40] (32
containers): a microservice similar to IMDB [41] where users
can search, review, rate, and add films, (2) HipsterShop [42]
(11 containers): an online shopping microservice consisting
of standard browsing and purchasing of various items, (3)
TrainTicket [43] (68 containers): a microservice that simulates
a train ticket booking service consisting of searching, booking,
modifying tickets, and (4) Teastore [44] (7 containers): a sim-
ulated online tea store where users can browse and purchase
hundreds of various teas.

For each microservice experiment we load the microservice
with one of four workload distributions: a fixed request rate,
an exponentially distributed request rate, a bursting request
rate, and an Alibaba datacenter trace [45]. The Fixed workload
sends requests at a constant 400 requests per second. The
Exponential (Exp) workload sends requests in an exponential
distribution with λ = 300. The Burst workload sends a fixed
50 req/sec. with an additional 10 second exponential burst
of requests where λ = 600 every 20 seconds. Finally, the
Alibaba workload is sped up by 10x and sends requests at
rates anywhere from 56-548 req/sec.

Evaluation Metrics Below is a list of metrics used in this
section (derived from [3]):
• Absolute Slack: The container CPU or memory limit minus

the container CPU or memory usage.
• Application Throughput: Measured in successful requests

per sec.
• Application 99.9%ile Latency: Measured as the 99.9%ile

end-to-end latency.

Autopilot Implementation Autopilot [3] is not open-source
so we implemented a recreation of the Autopilot ML recom-

mender to compare against Escra. The Autopilot ML recom-
mender is inspired by a multi-armed bandit problem in which
an agent tries to use the best set of arms to maximize the
total reward gain over time. Some parameters used in the
Autopilot algorithm are manually tuned by their engineers (wo,
wu, etc.). As they did not specify what values they used for
these parameters, we tuned them to values that resulted in the
best performance.

Note that Autopilot defaults to updating container limits
every 5 minutes. We tested the update period of Autopilot at
60, 30, 10, and 1 seconds and saw finer-grained update periods
achieve better performance. The throughput of HipsterShop
with Autopilot at 1, 10, 30, and 60 second update periods
degrades from 422 req/sec. to 382 req/sec. to 279 req/sec.
to 108 req/sec., respectively. While we do not know how
practical it is to run Autopilot at that granularity at scale, we
show comparisons against 1 second intervals as a best case
for Autopilot.

B. Performance - Cost-Efficiency Trade-off

Intuitively, there exists a resource allocation trade-off be-
tween performance and cost-efficiency. One can allocate a
large amount of resources to eliminate any possible perfor-
mance penalty (measured in throughput and latency), but this
leads to poor cost-efficiency (measured in terms of slack).
In contrast, one can significantly under-allocate resources
and improve the cost-efficiency, but this is at the price of
reduced performance. We further examine this trade-off in the
context of both common practice (static allocation) and state-
of-the-art (Autopilot), and illustrate that Escra achieves better
performance and cost-efficiency than each system, and that the
other systems compromised on one of the metrics.

First, we estimated the resources needed for the MediaMi-
croservice from the Deathstar Benchmark [40] by profiling
each container and measuring maximum CPU and memory
usage. We then ran the application in underutilized (limits set
at 0.75x the profiled max), best-estimate (set at 1.0x), and safe
buffer (set at 1.5x) cases. For each case, we measure the end-
to-end performance (latency and throughput) and slack (CPU
cores allocated minus cores used, and MiBs allocated minus
MiBs used). As expected, performance increased (i.e., latency
decreased and throughput increased) with more resources
allocated; however, slack (resource wastage) also increased.
We find the 1.5x allocation level illustrates a sufficient buffer
and use that setting for evaluating the trade-offs in comparison
to Autopilot and Escra.

For this evaluation, we deployed each microservice and used
the workload generation-based benchmarking tool wrk2 [46]
with the four different workloads. Each application is evalu-
ated when managed by 1.5x static limits, Autopilot, and Escra.
This setup allows us to measure both latency and throughput
to quantify the performance in each approach, and slack to
quantify the cost-efficiency of each approach. Figure 4 shows
the resulting change in latency and change in throughput
between Autopilot and Escra and between static limits and
Escra for all four applications and workload distributions.



App
Comp.

Avg. ∆
Latency

Avg. ∆
Tput.

Avg. ∆ 50%
CPU Slack

Avg. ∆ 99%
CPU Slack

Avg. ∆ 50%
Mem. Slack

Avg. ∆ 99%
Mem. Slack

Static vs.
Escra 38.0% 25.4% 81.3% 74.2% 55.0% 95.9%

Autopilot
vs. Escra 36.1% 54.5% 78.3% 78.6% 26.7% 68.9%

TABLE I: Average performance increase and average slack
reduction for both CPU and memory between static and Escra
and between Autopilot and Escra. Escra improves perfor-
mance, while significantly reducing slack

Table I summarizes our results and is broken down in the
subsequent sub-sections.

C. Static Allocation vs. Escra

We first look at the change in both latency and throughput
between a statically allocated application and an application
deployed with Escra. Table I show that on average, Es-
cra decreases latency by 38% and increases throughput by
25.4% compared to statically allocated applications. Escra can
achieve these performance numbers with an average 50%ile
and 99%ile CPU slack improvement of 81.3% and 74.2%,
respectively. Escra also decreases 50%ile and 99%ile memory
slack by 55% and 95.9%, respectively.

In an ideal world, we would not see a performance im-
provement from Escra over a statically deployed application
allocated 1.5 times the peak measured resource usage; the
static deployment would never experience any throttles or
OOMs. However, this result is a testament to how difficult it
is for developers to set resource limits on containers [3], [10]–
[13]. Not only is it hard to profile containers, since you never
know what the workload rate is truly going to be, but also the
tools to measure resource usages (especially for CPU) tend
to aggregate over seconds to minutes, smoothing out usage
spikes [33], [34], [47].

The other reason for the performance difference between
Static Allocation and Escra is from the fact that Escra can
dynamically share and shift resources between containers at
runtime. For example, in a static deployment, when a container
is underutilized (Cu) and another container is getting throttled
(Ct), Ct cannot use any of Cu’s resources. However, in Escra
Cu is scaled down while Ct is scaled up (without exceeding
the per-application global limit). Escra’s ability to shift re-
sources among containers and enforce a per-application limit
at runtime, enables an application to fully utilize its allocated
CPU and memory. This is a Distributed Container’s main
difference to Resource Quotas [22], [23]. Resource Quotas
are only enforced at container deploy time, so in the case
above, Ct cannot scale up because Cu is already deployed and
the global limits were enforced on deployment. In the case
of VPA [25] (discussed in Section II), the autoscaler would
have to constantly kill and restart containers as CPU usages
changed.

We break down TrainTicket with Fixed and Teastore with
Alibaba experiments in the following paragraphs to help
illustrate the ability of Escra to achieve both high performance
and cost efficiency.

TrainTicket with Fixed Workload Figure 4 shows that
TrainTicket with Fixed performs slightly worse with Escra
than with static allocation, seeing a 5.5% decrease in through-
out. Examining the slack in Figures 5a and 6a, 50% of the
time, the static allocation has over 2.5 cores of CPU slack
and 256MiB of memory slack. In contrast, Escra has a 50%
CPU slack of 0.14 cores (a 17.9x improvement) and memory
slack of 49MiB. This experiment shows the trade-off the static
deployment makes, sacrificing significant cost-efficiency for a
slight performance increase.

Teastore with Alibaba Workload Escra improves latency
and throughput of Teastore by 25.7% and 51.6%, respectively.
Figures 5b and 6b show while Escra is able to increase
performance, it can do so while reducing 50%ile and 99%ile
CPU slack by over 81% and 74% respectively, while also
significantly reducing memory slack.

D. Autopilot vs. Escra

Autopilot aims to reduce slack without sacrificing per-
formance using ML. However, Table I shows on average,
Escra decreases latency by 36.1% and increases throughput
by 54.5% compared to Autopilot. Table I also shows Es-
cra’s average 50%ile and 99%ile CPU slack improvement
over Autopilot is 78.3% and 78.6%, respectively. Escra also
decreases 50%ile and 99%ile memory slack by 26.7% and
68.9%, respectively. We further examine the results of two of
these experiments below to determine how Escra can achieve
both high performance and high cost efficiency.

HipsterShop with Exp Workload In a few cases, Autopilot
gets some performance improvements over Escra since it
trades for performance gains at the cost of slack. Autopilot
increases the throughput of HipsterShop compared to Escra
by 3.16%. However, Figures 5c and 6c show Autopilot over
allocates resources, with the median slack greater than 1.43
cores and 20% of allocations over 2.38 cores. For Escra, the
median slack is 0.12 cores (an 11.6x decrease) with an 80%ile
CPU slack of 0.35 cores.

MediaMicroservice with Burst Workload Figure 4 shows
Autopilot degrades MediaMicroservice with Burst throughput
and increases its latency. This indicates that Autopilot fails
to quickly react to rapid and significant changes in CPU
workloads and memory usages, resulting in low slack but
higher latency and lower throughput. For the same application
and workload, Escra is able to not only increase latency and
throughput performance by 16.6% and 84.3%, but also able
to reduce slack over Autopilot. Escra has a 99%ile slack less
than 66% of a core and a 99%ile memory slack of 46MiB.

E. Takeaways

Table I, Figure 4, and the four cases above show Escra
rarely performs worse than static allocation and Autopilot,
but when it does, the performance degradation is small and
the slack savings are significant. When Escra outperforms the
static allocation and Autopilot, Escra does so with significantly
reduced slack, proving that Escra is able to achieve both high
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Fig. 5: CPU slack CDFs comparing Escra, Autopilot, and statically deployed resources across the MediaMicroservice,
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performance and high cost efficiency. One of the key reasons
for the high performance Escra is that Escra is able to greatly
reduce OOMs. In all 32 experiments, Escra experienced zero
OOMs, while Autopilot had up to 8 OOMs in a single
experiment.

F. Serverless
This section shows how Escra integrates with Open-

Whisk [37] by benchmarking two applications: ImageProcess
and GridSearch. We run ImageProcess with one control node,
three worker nodes, and two nodes reserved for serverless
infrastructure (i.e., OpenWhisk and and a data store). The
GridSearch application runs with one additional worker node.
Each node is composed of two Xeon E5-2650v2 8-core 2.6
Ghz CPUs, 64GB of DDR-3 memory, and a dual-port Intel
X520 10Gb NIC. For both applications OpenWhisk is con-
figured to create each user action pod with 1 vCPU for CPU
request and limit, and 256 MiB of memory. We set κ to 0.8 and
γ to 0.2 for both applications and Υ to 35 for ImageProcess
and 20 for GridSearch in the Resource Allocator.

Serverless Benchmark Applications ImageProcess is a
single-function application inspired by the image processing
application in [48]. The function reads an image from a
database, processes image metadata, creates a thumbnail, and

writes the thumbnail to the database. Our workload is simple:
an ImageProcess request is sent every 0.8 seconds over 10
minutes. We perform four iterations of the experiment for a
total of 3k invocations for each test case. At the beginning of
each experiment, we ensure there are no ImageProcess pods
running (to ensure initial cold starts).

GridSearch is a traditional approach for tuning hyperpa-
rameters in classifiers. This batch-like application [49] uses
˜115 serverless function pods to classify an Amazon product
review dataset using scikit-learn [50] and tunes the classi-
fier hyperparameters using the GridSearch algorithm. Each
function is charged with completing tasks until all 960 tasks
are completed. GridSearch uses the Lithops framework [51]
for orchestration. We set the Lithops serverless backend to
OpenWhisk and the Lithop storage backed to Redis.

The reason Υ is set to different values for GridSearch
verses ImageProcess is due to the differences in workload
characteristics. In GridSearch, each user action is relatively
long-lived as each action is a worker that will complete as
many tasks as possible. Thus, it was performant to give Υ
for GridSearch the same value used for microservices. In
ImageProcess, a user action is a short-lived request. As such,
container reuse is common and containers may experience
periods of idleness between user actions. Increasing Υ allows
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containers to more quickly be granted the resources they need
as they are created and as they transition from idle (unused)
to used (running a user action).

Evaluation Metrics Below are the metrics used in the
evaluation of the serverless benchmarks:
• Aggregate Limits: Since it is common in serverless systems

to bill based on total usage, and serverless providers have a
strong incentive to pack as many functions as possible per
server, instead of CPU/memory usage per pod we focus on
the aggregate of container CPU and memory limits.

• Application Latency: Measured in end-to-end latency per
request (ImageProcess) or job (GridSearch)

G. OpenWhisk vs. Escra + OpenWhisk

Performance We first consider ImageProcess performance
for OpenWhisk alone and OpenWhisk + Escra. Figure 7a
shows that, up to the 80th%ile, OpenWhisk + Escra sees
modest performance gains over OpenWhisk alone while the
overall 99th%ile latency remains similar for both. The average
invocation latency with OpenWhisk + Escra is 1.99 seconds
as opposed to 2.12 seconds with OpenWhisk alone. Unlike
other applications tested with Escra, ImageProcess requires
Escra to handle a variable number of pods as the number of
application pods at the start of each benchmark iteration is
zero. The similarity in tail latency between OpenWhisk alone
and OpenWhisk + Escra indicates that Escra is capable of
supporting the dynamic scale-up of application pods needed
in serverless environments.

To obtain a CDF of GridSearch application latency, we
ran GridSearch on: (1) OpenWhisk alone, (2) OpenWhisk +
Escra with the same amount of resources allocated as in the
OpenWhisk alone experiment, and (3) OpenWhisk + Escra
with 80% of the application resource limits allocated compared
to OpenWhisk alone. We ran the application 50 times for
each configuration. Interestingly, we observe the same average
latency (∼300 seconds) when we run GridSearch by allocating
equal resources to OpenWhisk and Escra + OpenWhisk (cases
1 and 2) and only 1% higher average (303 seconds) for case
3, showing Escra can allocate fewer resources to an app and
maintain similar performance. As is indicated in Figure 7b,
Escra + OpenWhisk outperforms OpenWhisk alone at 99%ile
and has lower tail latency.

Efficiency Figure 8 shows aggregate CPU and memory limits
for OpenWhisk and OpenWhisk + Escra for ImageProcess. On

average, OpenWhisk + Escra sets the limit at 7 vCPU whereas
OpenWhisk static allocation results in a limit of 12 vCPU,
resulting in a savings of approximately 5 vCPU for identical
workloads. For memory, the difference in the limit averages
around 1550 MiB.

According to Figure 9, OpenWhisk allocates 113 vCPUs
for GridSearch on average. On the other hand, Escra + Open-
Whisk was able to reduce the vCPU allocation to 53 vCPUs.
For memory, on average, OpenWhisk sets the application ag-
gregate limit to 29087 MiB while Escra + OpenWhisk is able
to run the same GridSearch application with an application
limit of 22264 MiB. On average, Escra + OpenWhisk saves
60 vCPUs and roughly 7 GiB of memory space.

H. Takeaways
As shown in the ImageProcess and GridSearch benchmarks,

Escra only minimally effects function latency while providing
significant resource savings on static CPU/memory limits.
In sum, Escra increased efficiency while maintaining perfor-
mance. ImageProcess in particular shows that Escra is able to
handle a dynamic and rapid increase in number of application
pods. The GridSearch results showcases how Escra can help
running batch-like, data intensive, long-running applications
with fewer resources but without increasing latency.

I. Escra MicroBenchmarks and Overheads

Why a 100ms Report Period? Escra uses a 100ms CPU
telemetry report frequency for two main reasons. First, 100ms
complements the default Linux CFS period. Second, we
measured the 99% end-to-end latency performance across
various report frequencies every 50ms from 50ms to 200ms.
Collecting CPU statistics at the end of every period (100ms)
and reporting them directly to the controller resulted in the
lowest application latency.

Escra Network Overhead Escra sends usage statistics over
UDP to the Controller and the Controller launches RPC calls
to the Agent process to update container limits. The peak
network overhead measured for 32 containers is 12.06 Mbps.
Since the majority of the bandwidth usage comes from the
per-container CPU telemetry, we expect the network overhead
to scale linearly with the number of containers managed.
An investigation into how Escra scales as containers are
geographically farther away from the Controller and Resource
Allocator (increasing network latency) is left to future work.

Escra CPU Overhead The largest CPU consumers in Escra
are the Controller, Resource Allocator, and the kernel threads
running on each worker node reporting telemetry data. The
Controller consumes the most CPU out of the three since
the the memory reclamation process relies on the cAdvisor
API [33], consuming up to 85% of a core. Replacing the
cAdvisor functionality with memory limit/usage system calls
would greatly reduce the memory reclamation overhead. With-
out cAdvisor, the Controller and Resource Allocator together
use 5.7% of a core with 68 containers. For a cloud-scale
analysis, we assume a separate Escra Controller and Resource
Allocator that manage each application. Escra Controllers and
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Fig. 9: Aggregate memory and CPU limits over 5 minutes of running GridSearch. We highlight the difference (savings) between
OpenWhisk limits and OpenWhisk + Escra limits with the savings graphs.

Allocators are able to manage 1,192 containers per core.
Assuming 20 cores per node, a collection of Escra Controllers
and Allocators can manage up to 23,859 containers per node.
Note, as more containers are registered with the Controller,
the mean time between subsequent container stats increases
sublinearly.

VII. DISCUSSION AND FUTURE WORK

This section discusses how Escra affects cloud ecosystems
and describes some directions for future work.

Multi-tenant Building a fully-fledged cluster management
system that takes advantage of Escra remains future work.
The contribution of this paper is that fine-grained, event-
driven resource allocation is possible and performs well. While
Escra can effectively reduce slack and increase performance,
it remains an open question in how such benefits translate to
a large-scale, complex, multi-tenant system.

Serverless Our initial implementation of OpenWhisk + Escra
is naive in several ways: (1) all containers are treated as the
same application; the framework would need to modify this to
deploy pods in per-tenant namespaces, and (2) the OpenWhisk
invoker remains unaware of the actual CPU and Memory limits
being used; it would need to be modified to ingest current
usage and limits from Escra. We leave these to future work.

Beyond the efficiency benefits of using Escra in serverless
systems, the Distributed Container abstraction may further be
useful for billing and accounting in serverless systems [52],
[53]. Many commercial frameworks set global limits on
serverless applications by setting an invocation limit (i.e., the

maximum number of concurrently running functions). With
the Distributed Container abstraction, it would be possible
to instead limit based on maximum memory or CPU usage.
The study of limits and billing using Distributed Containers
in serverless systems is a subject of future work.

VIII. CONCLUSION

This work illustrates how current orchestration systems fail
to achieve both high performance and cost efficient container
deployments, typically trading performance (throughput, la-
tency) for cost-efficiency (slack) or vice versa. We motivate the
need for a fine-grained and seamless container scaling orches-
trator and propose a solution: Escra. Escra uses kernel hooks
to generate both fine-grained telemetry and OOM handling
events that allow a logically-centralized Escra Controller to
allocate resources within 100s of milliseconds. As a result,
Escra minimizes CPU slack by over 10x compared to our
implementation of Autopilot. Escra also reduces application
limits in serverless frameworks, saving more than 2x the
CPU and memory resources over a standard serverless de-
ployment. Escra’s comparison to static approaches, Autopilot,
and OpenWhisk deployments indicates fine-grained container
scaling finds the balance between performance and efficiency
while maintaining isolation. Escra is open-sourced at https:
//github.com/gregcusack/Escra.git.
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