
Poster: Time Analysis of the Feasibility of Vehicular Blocktrees
Joshua Joy

University of California - Los Angeles
jjoy@cs.ucla.edu

Greg Cusack
University of California - Los Angeles

gregcusack@ucla.edu

Mario Gerla
University of California - Los Angeles

gerla@cs.ucla.edu

ABSTRACT
In this paper we evaluate the feasibility of the vehicular blocktree
proposed by Joy [4] whereby vehicles write and aggregate their
signatures to a blockchain. We analyze the end to end cycle time
to collect, write, and persist the content to the blockchain as well
as the total minting time. We show via time analysis that the cycle
time occurs on the order of hundreds of milliseconds, showing that
the proposed design is indeed feasible.

1 INTRODUCTION
In this paper we evaluate the feasibility of the vehicular blockchain
proposed by Joy [4] whereby vehicles write and aggregate their
signatures to a blockchain. We analyze the end to end cycle time
to collect, write, and persist the content to the blockchain as well
as the total minting time. We show via time analysis that the cycle
time occurs on the order of hundreds of milliseconds, showing that
the proposed design is indeed feasible.

Content is addressable by the signature pointers and is routed by
content based routing (e.g., information centric networks or delay
tolerant networks). The pointers ensure that the data is tamper
proof and also enables querying for the data (e.g., tags or attributes).
The consensus protocol ensures that the content pointed to by the
signatures is validated and verified. Thus, false or fake data does
not become stored.

2 EVALUATION
2.1 Simulation Model Setup
We quantitatively analyze the various elements of the network. The
simulation model is similar to the model used in [6]. Our model is
setup with a six lane highway, three lanes in each direction. We
assume an inter-vehicle distance of 30m and a constant velocity of
100kmh. Furthermore, the roads are divided up into 120m segments
due to the maximum working range of the widely used Velodyne
LiDAR [5]. This means that each vehicle can communicate and
monitor four vehicles per lane over six lanes. Vehicles in each 120m
segment, receive signatures from all twenty-three other vehicles in
the segment. Each 120m segment is associated with its own sidetree.
The vehicles that mints in a segment writes blocks to the segment’s
sidetree.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SMARTOBJECTS’17, October 16, 2017, Snowbird, UT, USA.
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5141-6/17/10. . . $15.00
https://doi.org/10.1145/3127502.3127516

2.2 Cycle Time Overview
In order for our system to be practical and safe, the entire block
minting cycle time needs to fall close to the message transmission
cycle time outlined in [6]. Every vehicle needs to do the following:
• Collect sensor data
• Generate keys
• Sign data
• Transmit data to edge cloud
• Broadcast signatures to surrounding vehicles
• Verify incoming signatures
• Access edge cloud
• Verify surrounding vehicle data with own sensor data
• Aggregate signatures into a block

Once a vehicle is (randomly) selected as the official aggregator, it
will broadcast its block to the surrounding vehicles. The remaining
vehicles need to compare the incoming block with their own and
either accept or reject the block.

The rest of this section will walk through the time it takes each
vehicle to perform the above actions.

2.3 Sensor Data Collection and Broadcast Time
Each vehicle needs to collect both its personal data such as velocity,
acceleration, and location, but it also needs to identify the charac-
teristics of its surroundings. The identification of other vehicles
and their respective speeds and accelerations is done by LiDAR
in combination with radar. The sensor data collection can all be
done in parallel, but identification of neighboring vehicles takes the
longest at a total time of 160ms [8]. Vehicle-to-vehicle signature
transmitting delay is approximately 30ms [6].

2.4 Relevant Key Times
Key generation, signing, and verification times needed to be bench-
marked using the ED25519 encryption standard using a commodity
processor. SafeCurves [3] benchmarks using an Intel Westmere
2.4GHz, quad-core processor while using batches of 64 keys at a
length of 64 bytes shows that key generation time took a mere
0.0025ms per key, while signing took a similar 0.0092ms. Verifica-
tion required more time resulted in 0.014ms per key. However, with
total overhead and latency, verification took 4ms [1].

2.5 Choosing and Accessing the Edge Cloud
We take advantage of the reliability and performance of a content
delivery network (CDN) to provide vehicle large data needs. The
requests are satisfied by the servers geographically closest to the
location of the incoming request. In order to choose a proper CDN,
we looked at latency and throughput performance of the network.
Table 1 shows the performance metrics of the three main networks
investigated. It can be seen in Table 1 that CacheFly, while hav-

Poster SMARTOBJECTS'17, October 16, 2017, Snowbird, UT, USA

25

https://doi.org/http://dx.doi.org/10.1145/3127502.3127516

Table 1: Content Delivery Network Performance Metrics [7]

Metric Akamai CacheFly EdgeCast
Latency (ms) 56.88 54.71 52.49

Throughput (Mbps) 2.07 3.88 3.37

ing a slightly higher latency than EdgeCast, provides the highest
throughput. Looking into the future of a blocktree-based vehicular
network, data sizes are likely to increase due to the increase in
sensor resolution. As a result, in order to efficiently fulfill the need
for larger data packets in the future, CacheFly was selected as the
CDN for data delivery. The data provided in Table 1 are averages.
Furthermore, latency and throughput times will vary over time
as traffic varies and CDNs improve network performance. There-
fore, it is likely that the network will require the use of multiple
CDNs with varying performance characteristics. For network per-
formance analysis and proof of concept evaluation, CacheFly is
used in our current model.

It is important to note that the maintenance of the edge cloud
needs to be supported. Cloud storage is not free. The edge cloud in-
frastructure will likely be supported through vehicle taxes. Whether
the vehicle manufacturer or the vehicle owner is taxed, the cost to
support the infrastructure will end up falling on the vehicle owner.
Everyone pays taxes to support road infrastructure and mainte-
nance, and paying for cloud infrastructure would be no different.

2.6 Data Comparison Time
Once all surrounding vehicle data is collected by each vehicle, a
vehicle needs to compare its view of the world with that of the its
surroundings. The time requirement here is minimal since vehicle
locations, velocities, and accelerations need to be compared with
just twenty-three other vehicles. However, for example, when Ve-
hicle A receives data from Vehicle B via the edge cloud, Vehicle A
needs to verify the vehicle locations as reported by Vehicle B. This
operation requires an extra twenty-three comparisons per vehicle.
However, after running a simulation to test a vehicle’s required
comparison time, the resulting maximum time requirement per
vehicle is a mere 0.014ms1.

2.7 Aggregation Time Requirements
Recall that aggregation requires three steps. First, vehicle signa-
tures are aggregated and hashed along with the previous block ID.
Second, a new block is created by grouping together the aggregated
signatures, the hash output which serves as the new block ID, and
a pointer to the previous block. Finally, once a vehicle is selected
to be the official aggregator, the vehicle broadcasts the block to its
neighboring vehicles. Each block contains twenty-four 100 byte
packets2. Also included is the 32-byte block ID and routing data
for broadcasting. Therefore, the size of each block is about 3kB.
A SHA-256 bit hash takes 8.12 cycles per byte (upper bound) for
1.5KB packets using a 3.31GHz, quad-core, 2015 Intel Core i5-6600
processor [2]. 8.12 cycles per byte correspond to 24,360 cycles. At
1The simulation was written in C and run on a 2015 MacBook Pro containing a 2.5GHz
Intel Core i7
2We assume 100 byte packets which include 64 byte signatures, 8 byte addresses, and
reserve the rest for routing information

a clock speed of 3.31GHz, hashing requires 0.00736ms. By far the
largest time requirement of block minting is the transmission delay
from broadcasting the block into the network. Block delivery time
is likely to take around 50-60ms due to large packet sizes [6]. We as-
sume the minter requires just over 60ms to generate and broadcast
a block.

2.8 Total Aggregation Cycle Time Analysis
After outlining the aggregation requirement time, we are now ready
to calculate the total cycle time required to gather data, verify it,
aggregate a block, and broadcast it to the surrounding vehicles and
the edge cloud. The total time is found to be around 334.033ms via
the following equations3.

(дen_key + LiDAR_identi f ication) + data_siдn+
(Tx _data_to_cloud + broadcast_siд) +veri f y_siд+
access_edдecloud_data +veri f y_data + hash_siдs+

broadcast_new_block = total_mintinд_time

(1)

We can substitute in the actual numerical values to get the total
minting time.

(.0025ms + 160ms) + .0092ms + (55ms + 30ms)+

4ms + 55ms + 0.014ms + 0.00736ms + 60ms

= 334.033ms

(2)

With vehicles traveling at 100kph ≈ 28m/s, minting segments of
120m, and a minting cycle time of 334.033ms, each vehicle will be
involved in 12-13 minting cycles per segment before traveling to
another segment and minting blocks to a new sidetree.

While 334ms is longer than the 300msmessage transmission time
described in [6], a 10% deviation for vehicles flowing smoothly is
not ideal but is accepted at the beginning stages of development. As
development continues, it is likely the total cycle time will reduce
do to increased CDN performance and further parallelization.

3 CONCLUSION
In this paper, we have analyzed the feasibility of vehicular blockchains.
We show that the vehicle to vehicle communication, signature gen-
eration and verification, and content storage occurs on the order of
hundreds of milliseconds which should be suitable for the vehicular
blockchain proposed.

REFERENCES
[1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

2012. High-speed high-security signatures. J. Cryptographic Engineering 2, 2
(2012), 77–89. https://doi.org/10.1007/s13389-012-0027-1

[2] Daniel J. Bernstein and Tanja Lange. 2017. eBACS: ECRYPT Benchmarking of
Cryptographic Systems. https://bench.cr.yp.to. (2017).

[3] Daniel J. Bernstein and Tanja Lange. 2017. SafeCurves: choosing safe curves for
elliptic-curve cryptography. https://safecurves.cr.yp.to/. (2017).

[4] Joshua Joy. 2017. Vehicular Blocktrees. (2017).
[5] Velodyne Lidar. 2016. Velodyne Lidar. https://velodynelidar.com/. (2016).
[6] Maxim Raya and Jean-Pierre Hubaux. 2007. Securing vehicular ad hoc networks.

Journal of Computer Security 15, 1 (2007), 39–68. http://content.iospress.com/
articles/journal-of-computer-security/jcs275

[7] Jason Read. 2017. CDN Performance Summary 2011-2014. http://blog.
cloudharmony.com/2014/06/cdn-performance-2011-2014.html. (2017).

[8] M. Szarvas, U. Sakai, and J. Ogata. 2006. Real-time Pedestrian Detection Using
LIDAR and Convolutional Neural Networks. In Intelligent Vehicles Symposium,
2006 IEEE. 213–218. https://doi.org/10.1109/IVS.2006.1689630

3The items in parenthesis signify operations that are carried out in parallel

Poster SMARTOBJECTS'17, October 16, 2017, Snowbird, UT, USA

26

https://doi.org/10.1007/s13389-012-0027-1
https://bench.cr.yp.to
https://safecurves.cr.yp.to/
https://velodynelidar.com/
http://content.iospress.com/articles/journal-of-computer-security/jcs275
http://content.iospress.com/articles/journal-of-computer-security/jcs275
http://blog.cloudharmony.com/2014/06/cdn-performance-2011-2014.html
http://blog.cloudharmony.com/2014/06/cdn-performance-2011-2014.html
https://doi.org/10.1109/IVS.2006.1689630

	Abstract
	1 Introduction
	2 Evaluation
	2.1 Simulation Model Setup
	2.2 Cycle Time Overview
	2.3 Sensor Data Collection and Broadcast Time
	2.4 Relevant Key Times
	2.5 Choosing and Accessing the Edge Cloud
	2.6 Data Comparison Time
	2.7 Aggregation Time Requirements
	2.8 Total Aggregation Cycle Time Analysis

	3 Conclusion
	References

